Illinois State Library

Electronic Documents of Illinois


Search:
S* in FirstWord [X]
Illinois State Water Survey in Organization [X]
rss icon RSS
Results:  21 Items
Sorted by:  
Page: 1 2  Next
Organization
Illinois State Water Survey[X]
XMLRecordID
000000000733 (1)
000000000759 (1)
000000000799 (1)
000000000802 (1)
000000000806 (1)
DateCreated
 

Title:  

Science for Society : Illinois State Water Survey

 
 Volume/Number:  2001  
 Issuing Agency:   
 Description:  Brochure describes the Illinois State Water Survey (ISWS), which has been a leader in the study of water resources for more than a century. Founded in 1895, its original mission was to survey the waters of Illinois to trace the spread of waterborne disease, ensure health and safety of public water supplies, improve wastewater treatment, and help develop sanitary standards for drinking water. The mission and scope have expanded to include varied scientific research and service programs relating to water and atmospheric resources of interest to Illinois. 
 Date Created:  9 24 2004 
 Agency ID:  IEM-2001-02 
 ISL ID:  000000000895   Original UID: 999999994319 FIRST WORD: Science 
 

Title:  

Sediment and nutrient monitoring at selected watersheds within the Illinois River Watershed for evaluating the effectiveness of the Illinois River Conservation Reserve Enhancement Program (CREP).

 
 Volume/Number:  2001  
 Issuing Agency:   
 Description:  This report documents the progress that has been made to date on the Conservation Reserve Enhancement Program (CREP) monitoring project. The Illinois Department of Natural Resources (IDNR) through the CREP provides support for this project. This monitoring program collects hydrologic, sediment, and nutrient data for selected watersheds within the Illinois River watershed to assist in the evaluation of the effectiveness of the program. The Illinois River CREP is a new initiative by the State of Illinois and the United States Department of Agriculture to implement conservation practices in the Illinois River watershed over a 15-year period that improve water quality and habitat for wildlife. Monitoring programs were established for sediment and nutrients for two pairs of watersheds within the Illinois River basin to collect hydrologic, sediment, and nutrient data during the implementation phase of the project. The two pairs of watersheds are the Court and Haw Creek watersheds (Spoon River basin) and the Panther-Cox Creek watershed (Sangamon River basin). This report details the location, equipment, and installation techniques used at the five monitoring stations and associated raingages that were installed as part of the data collection effort for this project. Samples of the data collection format and frequency are presented and described. Stage, nutrient concentration, and suspended sediment concentrations for data collected through June 2000 are also presented as appendices. 
 Date Created:  9 24 2004 
 Agency ID:  CR-2001-12 
 ISL ID:  000000000846   Original UID: 999999994329 FIRST WORD: Sediment 
 

Title:  

Sediment and water quality monitoring for the Vermilion River and Little Vermilion River watersheds

 
 Volume/Number:  2003  
 Issuing Agency:   
 Description:  The Vermilion River and Little Vermilion River watersheds lie in seven counties in east-central Illinois and west-central Indiana. The drainage areas of the Vermilion River and Little Vermilion River at their confluences with the Wabash River are 1434 and 244 square miles, respectively. The Vermilion River meets the Wabash River at river mile 257.4 and has three tributaries: North Fork, Middle Fork, and Salt Fork. The Little Vermilion River is a direct tributary of the Wabash River at river mile 247.8. Lake Vermilion, a 660-acre impounded reservoir located on the North Fork Vermilion River, is the main municipal drinking water supply for the City of Danville, Illinois. The Little Vermilion River is the main tributary for the 63-acre Georgetown Reservoir, the municipal drinking water supply for the community of Georgetown, Illinois. Approximately 88 percent of the watersheds for both rivers are in agricultural production with approximately 5 percent in forest/woodlands and wetlands. The Illinois State Water Survey (ISWS) conducted a two-year watershed monitoring study of the Vermilion River and Little Vermilion River watersheds for the Vermilion River Ecosystem Partnership-Conservation 2000 Ecosystem Program. The purpose was to assist the partnership by establishing a baseline of hydrologic and water quality data to provide a better understanding of the cumulative impacts of future best management practices implemented in the watersheds. The ISWS established a streamgaging station on the Little Vermilion River near Sidell and monitored the hydrology, sediment, and nitrate-nitrogen (nitrate-N) there and at three U.S. Geological Survey (USGS) streamgaging sites in the Vermilion River watershed (Middle Fork Vermilion River above Oakwood, North Fork Vermilion River near Bismarck, and Vermilion River near Danville). Annual sediment loads for the three Vermilion River watershed stations were approximately three times higher than loads at the Little Vermilion station. The Middle Fork station had the highest sediment loads among the three Vermilion River stations for both project years. The North Fork station had the highest annual nitrate-N load for both monitoring years. In general, annual sediment and nitrate-N loads were lower during the first monitoring year, due to below average spring season runoff. Sampling for three pesticides (atrazine, alachlor, and metolachlor) was done on a weekly basis from June to October 2002. Atrazine was the only pesticide detected during this period. The highest level sampled was 20.93 micrograms per liter (and#956;g/L) and, and all others were below 2.65 and#956;g/L. 
 Date Created:  9 24 2004 
 Agency ID:  CR-2003-06 
 ISL ID:  000000000873   Original UID: 999999994403 FIRST WORD: Sediment 
 

Title:  

Sediment management alternatives for the Fox Chain of Lakes along the Fox River in Illinois

 
 Volume/Number:  2002  
 Issuing Agency:   
 Description:  The Fox Chain of Lakes is a series of interconnected glacial lakes that are essentially located along the main stem of the Fox River. Originating in Wisconsin, the Fox River flows through northern Illinois before becoming a major tributary of the Illinois River. About 75 percent of the Fox River above the lowest section of the Fox Chain of Lakes lies in Wisconsin. The drainage area above the lowest point of the chain is about 1,184 square miles. The Fox Chain of Lakes has a surface area of more than 6,000 acres. Over the years, significant land-use changes have occurred on this watershed. These changes and the geographical location of the Fox River have resulted in extensive sediment deposition within these lakes. This is especially true for those lakes in the direct path of the Fox River. For example, Grass Lake and Nippersink Lake have lost most of their capacities to sediment deposition. The average depth of Grass Lake in 1975 was 2.7 feet, and the sediment is extremely soft. Within the present research activity, the original research conducted in 1974-1975 by the authors is being examined along with additional data collected by others within the last 25 years. These initial analyses indicated that both in-lake and off-lake sediment management techniques must be implemented to increase water depths within the lakes and decrease sediment loads. Among the in-lake management alternatives that should be considered are dredging and disposing of sediment outside the lake, discharging hydraulically dredged sediment into geotubes or some other type of containment facility within the lake, and creating artificial islands within the lake with dredged sediments. The watershed-based sediment management alternatives could include implementation of best management practices on the watershed, flow and sediment retention basins, side channel sediment traps, sediment management within the stream channel, and the implementation of a systemwide sediment management alternative. 
 Date Created:  9 24 2004 
 Agency ID:  CR-2002-04 
 ISL ID:  000000000862   Original UID: 999999994342 FIRST WORD: Sediment 
 

Title:  

Sedimentation survey of Highland Silver Lake, Madison County, Illinois

 
 Volume/Number:  2001  
 Issuing Agency:   
 Description:  Sedimentation detracts from the use of any water supply lake by reducing lake depth and volume, with a reduction of reserve water supply capacity and possible burying of intake structures. Sedimentation of a reservoir is a natural process that can be accelerated or slowed by human activities in the watershed. Silver Lake is Located in Madison County, one mile northwest of Highland, Illinois. The location of the dame is 38 degrees 46' 00" north latitude and 89 degrees 42' 05" west longitude in Section 30, T.4N., R.5W., Madison County, Illinois. The dam impounds the East Fork of Silver Creek, a tributary of Silver Creek in the Kaskaskia River basin. The watershed is a portion of Hydrologic Unit 07140204 as defined by the U.S. Geological Survey. Construction of the lake was completed in 1962. The Silver Lake watershed consists of the 47.1-square-mile area drained by the East Fork of Silver Creek above the dam site. Land use in the watershed of the lake is mainly agricultural. Average annual precipitation in the area is 38.98 inches as measured at Greenville (1961-1990), and the average runoff (1912-1998) is approximately 10.0 inches (Shoal Creek near Breese). Average annual lake evaporation rates are 35.2 inches per year at St. Louis, Missouri. The Illinois State Water Survey conducted sedimentation surveys of Silver Lake in 1981 and 1984. In 1981, cross sections were laid out at 14 lines across the lake and surveyed. Sedimentation surveys of Silver Lake in 1984 and 1999 repeated as closely as possible the series of survey lines established during the 1981 survey. Sedimentation has reduced the capacity of Silver Lake from 7,322 acre-feet or ac-ft (2,386 million gallons) in 1962 to 5,832 ac-ft (1,900 million gallons) in 1999. Sediment accumulation rates in the lake have averaged 40.3 ac-ft per year from 1962-1999. Annual sedimentation rates for three separate periods, 1962-1981, 1981-1984, and 1984-1999, were 51.2, 63.0, and 21.9 ac-ft, respectively. Density analyses of the sediment samples indicate that sediment in the northern (upstream) portions of the lake has greater unit weight than sediment in the southern end of the lake. In general, coarser sediments are expected to be deposited in the upstream portion of a lake where the entrainment velocity of the stream is reduced to the much slower velocities of a lake environment. These coarser sediments tend to be denser when settled and are subject to shallow drying and higher compaction rates as a result of more frequent drawdown exposure in the shallow water environment. As the remaining sediment load of the stream is transported through the lake, increasingly finer particle sizes and decreasing unit weight are observed. The sedimentation rate for Highland Silver Lake is similar to the rates for other Illinois lakes of similar size and character. The sedimentation for Silver Lake is in the low to average ranged compared to other Illinois lakes. 
 Date Created:  9 24 2004 
 Agency ID:  CR-2001-05 
 ISL ID:  000000000835   Original UID: 999999994316 FIRST WORD: Sedimentation 
 

Title:  

Sedimentation survey of Lake Decatur's Basin 6, Macon County, Illinois.

 
 Volume/Number:  2001  
 Issuing Agency:   
 Description:  Sedimentation detracts from the use of any water supply lake by reducing lake depth and volume, with a reduction of reserve water supply capacity and possible burying of intake structures. Sedimentation of a reservoir is a natural process that can be accelerated or slowed by human activities in the watershed. Lake Decatur is located in Macon County, northeast of Decatur, Illinois. The location of the dam is 39 49 28" north latitude and 88 57 30" west longitude in Section 22, T.16N., R.2W., Macon County, Illinois. The dam impounds the Sangamon River in the Sangamon River basin. The watershed is a portion of Hydrologic Unit 07130006 as defined by the U.S. Geological Survey. The lake was constructed in 1922 with a spillway level of 610 feet above mean sea level (feet-msl). In 1956, a set of hydraulic gates was installed on the original spillway to allow variable lake levels from 610 feet-msl to 615 feet-msl. The portion of the lake surveyed for the present study was Basin 6 located above Rea's Bridge Road. This basin of the lake is the headwater area of the main body of the lake. Lake Decatur has been surveyed to document sedimentation conditions eight times since 1930. Five of these survey efforts (1936, 1946, 1956, 1966, and 1983) were sufficiently detailed to be termed full lake sedimentation surveys. The present survey is not considered to be a full lake sedimentation survey. Sedimentation has reduced the basin capacity from 2,797 acre-feet (ac-ft) in 1922 to 1,451 ac-ft in 2000. The 2000 basin capacity was 48.1 percent of the 1922 potential basin capacity. For water supply purposes, these volumes convert to capacities of 911 million gallons in 1922 and 473 million gallons in 2000. Sedimentation rate analyses indicate a decline in annual sediment deposition rates from 35.4 ac-ft for the period 1922-1936 to 8.3 ac-ft annually from 1983-2000. The long-term average annual deposition rate for 1922-2000 was 17.3 ac-ft. Density analyses of the sediment samples indicate that the unit weight of sediment in the northern (upstream) portions of the lake is greater than the unit weight of sediment in the southern end of the lake. In general, coarser sediments are expected to be deposited in the upstream portion of a lake where the entrainment velocity of the stream is reduced to the much slower velocities of a lake environment. These coarser sediments tend to be denser when settled and are subject to drying and higher compaction rates as a result of more frequent drawdown exposure in the shallow water environment. As the remaining sediment load of the stream is transported through the lake, increasingly finer particle sizes and decreasing unit weight are observed. 
 Date Created:  9 24 2004 
 Agency ID:  CR-2001-07 
 ISL ID:  000000000838   Original UID: 999999994321 FIRST WORD: Sedimentation 
 

Title:  

Sedimentation survey of Lake Decatur's Big and Sand Creek basins, Macon County, Illinois

 
 Volume/Number:  2002  
 Issuing Agency:   
 Description:  Sedimentation detracts from the use of any water-supply lake by reducing lake depth and volume, with a reduction of reserve water-supply capacity and possible burying of intake structures. Sedimentation of a reservoir is a natural process that can be accelerated or slowed by human activities in the watershed. Lake Decatur is located in Macon County, northeast of Decatur, Illinois. The location of the dam is 39 49' 28' north latitude and 88 57' 30' west longitude in Section 22, T.16N., R.2W., Macon County, Illinois. The dam impounds the Sangamon River in the Sangamon River basin. The watershed is a portion of Hydrologic Unit 07130006 as defined by the U.S. Geological Survey. The lake was constructed in 1922 with a spillway level of 610 feet above mean sea level (feet-msl). In 1956, a set of hydraulic gates was installed on the original spillway to allow variable lake levels from 610 feet-msl to 615 feet-msl. The portions of the lake surveyed for the present study were the Big and Sand Creek basins. These basins are the two major tributary stream basins formed to the south (Sand Creek) and east (Big Creek) of the main body of the lake. They receive the flow of Sand, Big, and Long Creeks. Lake Decatur has been surveyed to document sedimentation conditions nine times since 1930. Five of these survey efforts (1936, 1946, 1956, 1966, and 1983) were sufficiently detailed to be termed full lake sedimentation surveys. The survey discussed in detail in this report is not a full lake sedimentation survey. However, additional work included in the present study could be combined with the 2000 survey of Basin 6 of Lake Decatur to provide a complete baseline survey for future reference. Sedimentation has reduced Big Creek basin capacity from 2,754 acre-feet (ac-ft) in 1922 to 1,512 ac-ft in 2001. The 2001 basin capacity was 54.9 percent of the 1922 potential basin capacity. For water-supply purposes, these volumes convert to capacities of 897 million gallons in 1922 and 493 million gallons in 2001. Sedimentation rate analyses indicate a decline in annual sediment deposition rates from 28 ac-ft (1922-1946) to 9.9 ac-ft annually (1983-2001). The long-term average annual deposition rate was 15.7 ac-ft (1922-2001). Sedimentation has reduced the Sand Creek basin capacity from 610 acre-feet (ac-ft) in 1922 to 246 ac-ft in 2001. The 2001 basin capacity was 40.3 percent of the 1922 potential basin capacity. For water-supply purposes, these volumes convert to capacities of 199 million gallons in 1922 and 80 million gallons in 2001. Sedimentation rate analyses indicate a decline in annual sediment deposition rates from 8.4 ac-ft (1922-1946) to 2.3 ac-ft annually (1983-2001). The long-term average annual deposition rate was 4.6 ac-ft (1922-2001). 
 Date Created:  9 24 2004 
 Agency ID:  CR-2002-09 
 ISL ID:  000000000870   Original UID: 999999994347 FIRST WORD: Sedimentation 
 

Title:  

Sedimentation survey of Lake Paradise and Lake Mattoon, Mattoon, Illinois

 
 Volume/Number:  2003  
 Issuing Agency:   
 Description:  The Illinois State Water Survey (ISWS) conducted sedimentation surveys of Lake Paradise and Lake Mattoon during 2001 in support of an Illinois Clean Lakes Program diagnostic/feasibility study to provide information on the storage and sedimentation conditions of the lakes. Both lakes are owned and operated by the City of Mattoon, which withdraws water from Lake Paradise as the raw water source for distribution of finished water and generally uses withdrawals from Lake Mattoon to maintain a more stable water level in Lake Paradise. The village of Neoga also withdraws water from Lake Mattoon for treatment and distribution. Since June 2001, Reliant Energy has operated a peaker power plant that has withdrawn water from Lake Mattoon for cooling systems. Lake Paradise and Lake Mattoon are located on the main stem of the Little Wabash River, a tributary to the Wabash River. The watershed is a portion of Hydrologic Unit 05120114. The dam for Lake Paradise is about 4 miles southwest of the City of Mattoon at 39 24' 47" north latitude and 88 26' 23" west longitude in Section 8, Township 11N., Range 7E., Coles County. The dam for Lake Mattoon is about 12 miles southwest of the City of Mattoon at 39 20' 00" north latitude and 88 28' 56" west longitude in Section 1, Township 10N., Range 6E., Shelby County.Lake Paradise was surveyed in 1979 and Lake Mattoon in 1980 as part of a previous cooperative study by the ISWS, the Illinois Department of Transportation - Division of Water Resources (DoWR), the Illinois Water Resources Center, and several departments at the University of Illinois at Urbana-Champaign. Lake Paradise lost 835 acre-feet (ac-ft) of its capacity as a result of sedimentation between 1908 and 2001. Approximately 481 ac-ft of this loss has occurred since 1931, which gives an annual sedimentation rate of 9.9 ac-ft since 1931. If this rate of sedimentation continues, the volume of Paradise Lake will be approximately half of the potential 1908 volume in the year 2013 and will be filled completely by sediment in the year 2118. Lake Mattoon lost 1,705 ac-ft of its 1958 capacity as a result of sedimentation between 1958 and 2001, a sedimentation rate of 39.7 ac-ft per year since 1958.If this rate of sedimentation continues, the volume of Lake Mattoon will be approximately half of the 1958 capacity by 2124 and will be completely filled in the year 2291. The sedimentation rates for Lake Paradise and its watershed for the periods 1931-1979, 1979-2001, and 1931-2001 were stable and ranged from 9.5 to 10 ac-ft.The long-term average annual sediment yield from 1931-2001 was 9.85 ac-ft. These sedimentation rates correspond to a rate of loss of lake capacity of 0.51 percent per year (1931-2001). The sedimentation rates for Lake Mattoon and its watershed for the periods 1958-1980, 1980-2001, and 1958-2001 indicate a reduction in net sediment yield from 66.9 ac-ft per year for 1958-1980 to 10.7 ac-ft per year (1980-2001).The long-term average annual sediment yield was 39.5 ac-ft (1958-2001). These sedimentation rates correspond to rates of loss of lake capacity of 0.51 percent per year (1958-1980) and 0.08 percent per year (1980-2001).The long-term average sedimentation rate for the lake is 0.30 percent per year (1958-2001). 
 Date Created:  9 24 2004 
 Agency ID:  CR-2003-04 
 ISL ID:  000000000881   Original UID: 999999994353 FIRST WORD: Sedimentation 
 

Title:  

Sedimentation survey of Lake Vermilion, Vermilion County, Illinois

 
 Volume/Number:  1999  
 Issuing Agency:   
 Description:  The Illinois State Water Survey, in cooperation with the Consumers Illinois Water Company (CIWC), conducted a sedimentation survey of Lake Vermilion during the summer of 1998. The survey was undertaken to provide information on the storage and sedimentation conditions of the lake following a 1991 increase in the operational lake level. Lake Vermilion is owned and operated by the CIWC. The CIWC withdraws water from Lake Vermilion as the sole raw water source for direct distribution of finished water to Danville and Tilton, Illinois. The CIWC also provides finished water to the Catlin and Westville public water supplies. Lake Vermilion is located in Vermilion County, one mile northwest of Danville, Illinois. The operating elevation for the reservoir was increased from 576 feet NGVD to 582.2 feet NGVD in 1991. This modification increased storage capacity of the lake by approximately 4,600 acre-feet (ac-ft). Analysis of sedimentation rates for this larger storage capacity required the introduction of the term potential capacity for the reservoir for 1925-1991. The potential reservoir capacity was defined as the capacity of the reservoir if the basin formed by the valley had been filled to the level of the 1991 spillway. Sedimentation has reduced the potential capacity of Lake Vermilion from 13,209 ac-ft (4,304 million gallons) in 1925 to 7,971 ac-ft (2,597 million gallons) in 1998. The sediment accumulation rates in the lake have averaged 71.8 ac-ft per year from 1925-1998. Annual sedimentation rates for three separate periods, 1925-1963, 1963-1976, and 1976-1998 were 89.5, 50.2, and 53.9 ac-ft, respectively. Earlier lake structures affect the lake as it exists in 1999. These early structures also affected the ability to analyze the present sedimentation rate. The 1914 structure (the old dam) impounded water in what is now the upstream, northern half (lengthwise) of the present lake. This structure caused an undocumented amount of sedimentation in the affected lake segments. This sedimentation is included in the calculated sedimentation volume for the 1925-1963 survey period. On the basis of a 38-year (1925-1963) or a 49-year sedimentation period (1914-1963), the average annual sedimentation rate for the lake would be 89.5 and 69.4 ac-ft per year, respectively. Either rate is considerably higher than subsequent rates. The adjustment of the earlier volumes included an accounting of above water-level deposits for the 1963 and 1976 survey calculations and slightly increased the reported sediment volumes for those surveys. The change in reference capacity also significantly altered the presented sedimentation rates in percent of original volume. 
 Date Created:  8 31 2006 
 Agency ID:  CR-643 
 ISL ID:  000000000799   Original UID: 999999994049 FIRST WORD: Sedimentation 
 

Title:  

Sedimentation survey of the Morton Arboretum Lakes, DuPage County, Illinois

 
 Volume/Number:  1999  
 Issuing Agency:   
 Description:  The Illinois State Water Survey conducted a sedimentation and hydrographic survey of three small lakes at The Morton Arboretum in Lisle, Illinois, during the summer of 1998. The survey was undertaken in support of an Illinois Clean Lakes Program diagnostic/feasibility study of the lakes. The lakes are owned and maintained by The Morton Arboretum and serve primarily as landscape accents on the grounds. The lakes surveyed were: Meadow Lake, constructed in 1960; Sterling Pond, constructed in 1963; and Lake Marmo, constructed in 1922. Lake sedimentation occurs when sediment-laden water enters the reduced flow velocity regime of a lake. As the water velocity is reduced, suspended sediment is deposited in patterns related to the size and fall velocity of each particle. The soil particles are partially sorted by size along the longitudinal axis of the lake during this process. Larger, heavier sand and coarse silt particles are deposited in the upper end of the lake; finer silts and clay particles tend to be carried further into the lake. A sedimentation survey is a measure of the rate of volume and/or depth loss of the reservoir. The sedimentation survey provides detailed information on distribution patterns of sediment within the lake as well as temporal changes in overall sedimentation rates. Sedimentation has reduced the capacity of Meadow Lake by 10 percent, Sterling Pond by 51 percent, and Lake Marmo by 29 percent. The sediment accumulation rates in the lakes averaged 0.10 acre-feet per year for Meadow Lake, 0.29 acre-feet per year for Sterling Pond, and 0.10 acre-feet per year for Lake Marmo. 
 Date Created:  3 21 2006 
 Agency ID:  CR-638 
 ISL ID:  000000000806   Original UID: 999999994113 FIRST WORD: Sedimentation 
 

Title:  

Selected analytical methods for well and aquifer evaluation

 
 Volume/Number:  1962  
 Issuing Agency:   
 Description:  The practical application of selected analytical methods to well and aquifer evaluation problems in Illinois is described in this report. The subject matter includes formulas and methods used to quantitatively appraise the geohydrologic parameters affecting the water-yielding capacity of wells and aquifers and formulas and methods used to quantitatively appraise the response of wells and aquifers to heavy pumping. Numerous illustrative examples of analyses based on actual field data are presented. The aquifer test is one of the most useful tools available to hydrologists. Analysis of aquifer test data to determine the hydraulic properties of aquifers and confining beds under nonleaky artesian, leaky artesian, water table, partial penetration, and geohydrologic boundary conditions is discussed and limitations of various methods of analysis are reviewed. Hydraulic properties also are estimated with specific-capacity data and maps of the water table or piezometric surface. The role of individual units of multiunit aquifers is appraised by statistical analysis of specific capacity data. The influence of geohydrologic boundaries on the yields of wells and aquifers is determined by means of the image-well theory. The image-well theory is applied to multiple boundary conditions by taking into consideration successive reflections on the boundaries. Several methods for evaluating recharge rates involving flow-net analysis and hydrologic and groundwater budgets are described in detail. Well loss in production wells is appraised with step-drawdown test data, and well screens and artificial packs are designed based on the mechanical analysis of the aquifer. Optimum well spacings are estimated taking into consideration aquifer characteristics and economics. Emphasis is placed on the quantitative evaluation of the practical sustained yields of wells and aquifers by available analytical methods. The actual groundwater condition is simulated by a model aquifer having straight-line boundaries, an effective width, length, and thickness, and sometimes a confining bed with an effective thickness. The hydraulic properties of the model aquifer and its confining bed, if present, the image-well theory, and appropriate groundwater formulas are used to construct a mathematical model that provides a means of evaluating the performance of wells and aquifers. Records of past pumpage and water levels establish the validity of this mechanism as a model of the response of an aquifer to heavy pumping. 
 Date Created:  9 24 2004 
 Agency ID:  B-49 
 ISL ID:  000000000733   Original UID: 999999992049 FIRST WORD: Selected 
 

Title:  

Shallow groundwater quality sampling in Kane County, October 2003.

 
 Volume/Number:  2005  
 Issuing Agency:   
 Description:  Seventy-five shallow wells were sampled for water-quality analysis in Kane County in October 2003 to provide a 'snapshot' of groundwater quality in these shallow aquifers and also compare water quality from different parts and aquifers of Kane County. The quality of shallow groundwater in Kane County is generally good, especially in the western and central thirds of the county. However, the total dissolved solids (TDS) concentrations of samples from the eastern third of the county were significantly higher than elsewhere in the county. The ions of greatest concern are chloride and sulfate. Almost two-thirds of the samples from the eastern wells sampled had TDS, chloride, and/or sulfate concentrations above their drinking water standards. Road-salt runoff, vehicular exhaust, and industrial discharges are the most likely sources of these elevated solutes. Because the movement of groundwater is slow, the widespread presence of high TDS groundwater in the eastern urban corridor of Kane County suggests a fairly long history of shallow groundwater contamination. This project provides a baseline for shallow groundwater quality in Kane County. Repeating this study at 5-year intervals, sampling as many of the same wells as possible, would help to determine water-quality changes as Kane County undergoes land-use changes. More detailed studies at more frequent intervals for particularly sensitive areas or those with rapid changes in land use also may be helpful to water resource planners. 
 Date Created:  7 6 2005 
 Agency ID:  CR-2005-07 
 ISL ID:  000000000910   Original UID: 999999994456 FIRST WORD: Shallow 
 

Title:  

Shallow groundwater quality sampling in Kane County, October 2003.

 
 Volume/Number:  2005  
 Issuing Agency:   
 Description:  In October 2003, Illinois State Water Survey (ISWS) scientists collected water samples from 70 shallow domestic and industrial wells in Kane County for analysis of groundwater quality. The primary objectives were to provide a 'snapshot' of water quality in these shallow aquifers and compare water quality from different parts of Kane County, especially the eastern urban corridor and the western rural region. 
 Date Created:  4 29 2005 
 Agency ID:  IEM-2005-01 
 ISL ID:  000000000952   Original UID: 999999994450 FIRST WORD: Shallow 
 

Title:  

Sidestream elevated pool aeration (SEPA) stations: effects on in-stream dissolved oxygen

 
 Volume/Number:  2000  
 Issuing Agency:   
 Description:  As a result of increased pollutant loading and low in-stream velocities, dissolved oxygen (DO) levels in the Chicago waterways historically have been low. In 1984, the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) issued a feasibility report on a new concept of artificial aeration referred to as sidestream elevated pool aeration (SEPA). The SEPA station concept involves pumping a portion of water from a stream into an elevated pool. The water is then aerated by flowing over a series of cascades or waterfalls, returning to the stream. The MWRDGC proceeded with design criteria for SEPA stations as a result of experimental work performed by the Illinois State Water Survey (ISWS). Five SEPA stations were constructed and placed in operation along the Calumet River, Little Calumet River, and the Cal-Sag Channel waterway. In 1995 the ISWS returned to conduct research to evaluate the reaeration efficiencies and their effects on in-stream DO. Continuous monitoring of DO, temperature, pH, and conductivity was performed at 14 locations along the Calumet and Little Calumet Rivers, Cal-Sag Channel, and Chicago Sanitary and Ship Canal to evaluate the effectiveness of the SEPA stations on maintaining in-stream DO concentrations. Also, supplemental cross-sectional measurements were made at the 14 locations and at an additional seven locations. Comparisons of mass balance, completely mixed, in-stream mean DO concentrations at the SEPA station outfalls and those measured at cross-sectional stations immediately downstream of each SEPA station were made. Results showed that each SEPA station has an immediate positive impact on in-stream DO concentrations. At SEPA stations 1 and 2, where the impacts are small, the positive effects can best be demonstrated using completely mixed values. Two important conclusions can be made. One is that the SEPA stations, particularly stations 3, 4, and 5, are fulfilling the intended function of maintaining stream DO standards in the Calumet and Little Calumet Rivers and the Cal-Sag Channel. The second is that DO concentrations less than the DO standard are still observed in the Chicago Sanitary and Ship Canal in the reach beginning above its juncture with the Cal-Sag Channel to the Lockport Lock and Dam. Over the entire study period, DO concentrations were maintained above the standard 98.6 percent of the time from the SEPA station 3 outfall to the intake of SEPA station 4 and 97.5 percent of the time from the outfall of SEPA station 4 to the intake of EPA station 5. Significant improvements in DO concentrations were also achieved for at least 4 miles downstream of SEPA station 5 in the Chicago Sanitary and Ship Canal. 
 Date Created:  9 24 2004 
 Agency ID:  CR-2000-02 
 ISL ID:  000000000802   Original UID: 999999994078 FIRST WORD: Sidestream 
 

Title:  

Soil Moisture Summary

 
 Volume/Number:  2007 February 2 
 Issuing Agency:   
 Description:  This Illinois State Water Survey document measures soil moisture at all layers in Illinois. 
 Date Created:  02 02 2007 
 Agency ID:   
 ISL ID:  000000001913   Original UID: 1782 FIRST WORD: Soil 
 

Title:  

Soil Moisture Summary

 
 Volume/Number:    
 Issuing Agency:   
 Description:  This Illinois State Water Survey document measures soil moisture at all layers in Illinois. 
 Date Created:   
 Agency ID:   
 ISL ID:  000000004861   Original UID: NA for serial records FIRST WORD: Soil 
 

Title:  

Solar energy information and data for Illinois

 
 Volume/Number:  1978  
 Issuing Agency:   
 Description:  In the spirit of the State's solar energy focus, and to serve the needs of the publicand those involved in the design and implementation of solar energy systems, we decided to present the readily available weather and climatic data relating to 1) solar energy and 2) the demands for energy. This report is essentially a solar data compendium for Illinois. It contains a minimum of text and consists mainly of tables and graphs, largely assembled from a wide variety of publications (many not easily found). 
 Date Created:  9 24 2004 
 Agency ID:  C-133 
 ISL ID:  000000000759   Original UID: 999999993789 FIRST WORD: Solar 
 

Title:  

Spatial distribution, variation, and trends in storm precipitation characteristics associated with soil erosion in the United States

 
 Volume/Number:  2002  
 Issuing Agency:   
 Description:  Soil erosion and nonpoint source pollution runoff rates are estimated using output from the Revised Universal Soil Loss Equation (RUSLE). The underlying influence of climate on surface transport processes as represented in the RUSLE is carried within one constant, the R-factor. It has been assumed that the R-factor is temporally stationary; that is, it does not change with time. The purpose of this study was to process climate information from the most recent decades to update the R-factor, to examine the nature of precipitation variation and change and their impacts on the R-factor over space and time, and, specifically, to test the hypothesis that storm erosivity and the R-factor are temporally stationary. This was addressed by developing a database of precipitation data and related information needed to calculate single-storm erosivity and cumulative R-factor for each half-month of the year and for the total year. In addition the 10-year, single-storm erosive index for each station is provided. The R-factor, a nonlinear, cumulative measure of the erosive energy contained in storm precipitation, was calculated directly from 15-minute rainfall data. However, because of some undocumented quality difficulties with the 15-minute data, single-storm erosivity index statistics for accumulation into R-factors were calculated from more reliable daily data through the use of a power law transfer function. These new R-factors were tested for spatial covariation, which was found to be minimal in even terrain, and related to the limited amount of station R-factor data from past studies. Comparison with past R-factor studies indicated strongly that the methodologies used adequately duplicated old R-factors based on data from the 1930s to the 1950s. General increases observed in R-factors in this study were related to increasing amounts of precipitation and storms with rainfall greater than 12.7 millimeters, especially in the western United States. Mean seasonal patterns of storm precipitation total, duration, intensity, 30-minute and 15-minute maximum intensity, kinetic energy, erosivity, and the numbers of storms also were mapped for the conterminous United States. These analyses showed distinct patterns of precipitation change with seasons and identified regions of strong gradients where climate change first may be noticed. Trend analyses of storm precipitation variables over the 1971-1999 period indicated the lack of temporal stationarity of storm characteristics. Storm duration changes were especially an important cause of the observed changes in storm precipitation totals. However, storm trends in 30-minute maximum intensity seemed to be more important in changing the patterns of storm erosivity. Examination of storm characteristic response to interannual and interdecadal variations also indicated that storm characteristics were responding at these time scales to large-scale climate system forcings. In the winter season, atmospheric teleconnections such as the Pacific/North American Pattern and the North Atlantic Oscillation were shown to influence not only storm track positions and the number of storms at a location, but also the characteristics of individual storms. El Nio and La Nia events of the Southern Oscillation (ENSO events) had distinctive impacts on storm variables in every season of the year. Even the Pacific Decadal Oscillation showed a clear effect on storm characteristics, especially in the western United States. The results of R-factors derived from modern data compared to previous R-factors combined with storm characteristic trend and variability studies indicate conclusively that storm precipitation characteristics change sufficiently over time to warrant an evaluation of the necessity to recalculate R-factors on a regular basis. 
 Date Created:  9 24 2004 
 Agency ID:  CR-2002-08 
 ISL ID:  000000000878   Original UID: 999999994349 FIRST WORD: Spatial 
 

Title:  

State and Regional Water Supply Planning in Illinois: Ensuring Adequate and Reliable Supplies of Clean Water at Reasonable Cost for All Users

 
 Volume/Number:    
 Issuing Agency:   
 Description:  Illinois State Water Survey brochure shows how state and regional water supply planning will ensure adequate and reliable supplies of clean water for all users at reasonable cost. 
 Date Created:  11 27 2006 
 Agency ID:   
 ISL ID:  000000001914   Original UID: 1783 FIRST WORD: State 
 

Title:  

Streamflow assessment model for the Little Wabash River Watershed : hydrologic analysis

 
 Volume/Number:  2001  
 Issuing Agency:   
 Description:  The Illinois Streamflow Assessment Model (ILSAM) is an analytical and information tool developed to predict the frequency of streamflows, and water use impacts on streamflows, for every stream in selected major watersheds in Illinois. The current version of ILSAM was developed to operate on a personal computer having a Microsoft Windows 95/98/2000/NT operating system. The model user can obtain streamflow frequency estimates for any location in the watershed by identifying the desired stream and location. The ILSAM has been developed for use with streams in five such watersheds: the Sangamon, Fox, Kaskaskia, Kankakee, and Little Wabash River. This report includes a description of the steps used to develop ILSAM for application to the Little Wabash River watershed, along with a description of the physical characteristics of the watershed, its surface water hydrology, and the factors that influence streamflow variability. The Little Wabash River watershed is located in the southeastern portion of Illinois and has a total area of approximately 3238 square miles. The river and its major tributaries provide the source of water supply for all of the major communities in the watershed, either through direct withdrawals from the river or from the storage of water in impounding reservoirs. Many of these communities were forced to undertake emergency measures to sustain their water supply from these sources during the major droughts of the early- and mid-1900s. Thus, an understanding of the frequency of low flows and drought flows is critical for assessing surface water availability and yields for these communities. Streamflow frequency predictions produced by the model are also useful for evaluating instream flow levels for the protection of aquatic habitat, providing streamflow estimates for water quality analyses and regulations, and classifying Illinois streams by their hydrologic character for use in watershed management. The hydrologic analyses used to develop the model include evaluating the flow frequency from all streamgage records in the Little Wabash River region, evaluating impacts to flow quantity from dams, water supply, and treated wastewaters, and developing regional equations to estimate flows at ungaged sites throughout the watershed. All streamflow frequency estimates produced by the model are representative of the long-term expected flow conditions of streams, reflecting hydrologic conditions over a base period of nearly 50 years (1952-1999). 
 Date Created:  9 24 2004 
 Agency ID:  CR-2001-14 
 ISL ID:  000000000855   Original UID: 999999994330 FIRST WORD: Streamflow 
Page: 1 2  Next